Name \qquad

Mixed Stoichiometry

1) A sample of solid KClO_{3} was heated in a test tube and decomposed according to the following reaction: $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
The oxygen produced was collected by water displacement at $22.0^{\circ} \mathrm{C}$ at a total pressure of 754 mmHg . The volume of the gas collected was 0.650 L . The water vapor pressure at $22.0^{\circ} \mathrm{C}$ is 21.0 mmHg .
a. Calculate the partial pressure of O_{2} in the gas collected. 733 mmHg
b. Calculate the moles of oxygen produced. $\mathbf{0 . 0 2 5 9}$ moles $\mathbf{O 2}$
c. Calculate the mass of KClO_{3} that was decomposed. $\underline{\mathbf{2 . 1 2 g ~ K C l O}}$
2) A sample of methane gas $\left(\mathrm{CH}_{4}\right)$ having a volume of 2.80 L at $25.0^{\circ} \mathrm{C}$ and 1.65 atm was mixed with excess oxygen. The mixture was then ignited to form CO_{2} and water. Calculate the volume of CO_{2} formed at a pressure of 2.50 atm and a temperature of $125^{\circ} \mathrm{C}$.
2.47 L
3) Every year thousands of tons of limestone $\left(\mathrm{CaCO}_{3}\right)$ are decomposed by heating into CO_{2} and CaO (quicklime) according to the following reaction:

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CaO}(\mathrm{~s})
$$

How many liters of CO_{2} at 1.03 atm and a temperature of $950^{\circ} \mathrm{C}$ will be produced if 1.00 kg of CaCO_{3} is decomposed?

974L

4) If 6.32 g of barium sulfate is produced from the reaction of sulfuric acid with barium chloride, then what was the molarity of the sulfuric acid solution if only 50.0 mL was used?

$\mathbf{0 . 5 4 1 M}$

5) If 98.2 mL of a 1.50 M hydrochloric acid solution is reacted with excess aluminum hydroxide, then how many grams of aluminum chloride would be your theoretical yield?

$$
\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

6.55 g

6) If 25.2 mL of a 2.50 M sodium bromide solution reacts with excess chlorine gas, then how many liters of bromine gas would you expect to collect at 1.03 atm and 295 K ?

0.741 L

7) When a 45.3 g sample of KI dissolves in 85 g of water, the temperature drops from $23.5^{\circ} \mathrm{C}$ to $7.9^{\circ} \mathrm{C}$. calculate the heat of reaction for the process in kJ . (hint: calculate $\mathrm{kJ} / \mathrm{mol}$)

$$
\mathrm{KI}_{(\mathrm{s})} \rightarrow \mathrm{K}_{(\mathrm{aq})}^{+}+\mathrm{I}_{(\mathrm{aq})}^{-} \Delta \mathrm{H}=?
$$

20. kJ
8) When a 52.99 g sample of sodium iodide dissolves in 50.0 g of water, the temperature rises from $22.8^{\circ} \mathrm{C}$ to $32.8^{\circ} \mathrm{C}$. Calculate the heat of reaction for the process in kJ . (hint: calculate $\mathrm{kJ} / \mathrm{mol}$)

$$
\begin{aligned}
& \mathrm{NaI}_{(\mathrm{s})} \rightarrow \mathrm{Na}^{+}(\mathrm{aq}) \\
&+\mathrm{I}_{(\mathrm{aq})}^{-} \quad \Delta \mathrm{H}=? \\
& \underline{\underline{-92} \mathbf{~ k J}}
\end{aligned}
$$

Hard!

9) 43.8 g of liquid pentane was combusted in a 15.38 L container containing pure oxygen gas under 8.93 atm of pressure at 299 K . What is the final pressure of the container after the reaction occurs if the final temperature was 426 K ?

16.9atm

10) 1.83 g of sodium chloride is dissolved in 36.5 mL of water and is mixed with 23.4 mL of a 0.64 M silver nitrate solution. How many grams of solid could be recovered at the conclusion of the reaction? What is the concentration of each ion in the resulting solution?

$$
\underline{2.15 g ~ A g C l}, 0.523 \mathrm{M} \mathrm{Na}^{+}, 0.250 \mathrm{M} \mathrm{NO}_{3}^{-}, 0.272 \mathrm{M} \mathrm{Cl}^{-}
$$

