Standard Enthalpy, Hess, and Free Energy

Standard Enthalpy

- In order to compare one thing to another, there must be a "standard"
- Standard temperature, 25°C.
- Enthalpy changes during a reaction at 25°C are considered the standard enthalpy.
- ΔH_f^o = standard enthalpy of formation (found in book)
- Standard enthalpies of formation for elements in their common form at 25°C is 0kJ/mol
- Moles (mol) is just an amount for now (like puffs).

Standard Enthalpy of Formation

Look up the enthalpies on a table

•
$$\Delta H = H_{Products} - H_{reactants}$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

	Substance	# of Moles	$\Delta H_{ m f}$
			kJ/mole
Reactants	CH_4	1	-74.8
	O_2	2	0
Products	CO_2	1	-393.5
	H_2O	2	-285.8

$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

	Substance	# of Moles	$\Delta H_{\rm f}$ kJ/mole
Reactants	CH_4 O_2	1 2	-74.8 0
Products	CO ₂ H ₂ O	1 2	-393.5 -285.8

$$\Delta H_f = [-393.5 + 2(-285.8)] - [-74.8 + 2 (0)]$$

= -890.3 kJ/mol

Hess's Law

- Enthalpy is a "state" function
 - It doesn't matter how you get there, the energies are the same
- Reaction can be broken down into a series of steps.
 - We can add, subtract, multiply, reverse reaction enthalpies for each step
 - To find the overall enthalpy change

Hess' Law or State Functions

$$NO_{2(g)} \rightarrow 1NO_{(g)} + 1/2O_{2(g)} \Delta H = 56 \text{ kJ/mol}$$

Double the reaction = double the enthalphy $2NO_{2(g)} \rightarrow 2NO_{(g)} + O_{2(g)} \Delta H = 112 \text{ kJ/mol}$

The reverse of the reaction, "negative" $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)} \Delta H = -112 \text{ kJ/mol}$

Hess's Law

•
$$2H_2O_2 \rightarrow 2H_2O + O_2$$
 $\Delta H = -190kJ$

•
$$4H_2O_2 \rightarrow 4H_2O + 2O_2$$
 $\Delta H = -380kJ$

•
$$2H_2O + O_2 \rightarrow 2H_2O_2$$
 $\Delta H = +190kJ$

•
$$4H_2O + 2O_2 \rightarrow 4H_2O_2$$
 $\Delta H = +380kJ$

•
$$1H_2O_2 \rightarrow 1H_2O + \frac{1}{2}O_2$$
 $\Delta H = -95kJ$

$$C_{graphite} \rightarrow C_{diamond}$$

$$C_{\text{graphite}} + O_2 \rightarrow CO_2$$
 $\Delta H = -394 \text{ kJ}$
 $C_{\text{diamond}} + O_2 \rightarrow CO_2$ $\Delta H = -396 \text{ kJ}$

$$C_{diamond} + O_2 \rightarrow CO_2$$

$$\Delta$$
 H = -394 kJ

$$\Delta$$
 H = -396 kJ

$$C_{graphite}$$
 + O_2 \rightarrow CO_2 Δ H = -394 kJ CO_2 \rightarrow C_d + O_2 Δ H = +396 kJ

$$C_{graphite} \rightarrow C_{diamond}$$

$$\Delta H = +2 \text{ kJ}$$

Calculate the ΔH

$$2C_{(s)} + H_{2(g)} \rightarrow C_2H_{2(g)}$$

$$\begin{array}{c} C_2 H_{2(g)} + 5/2 \ O_{2(g)} \to \ 2 C O_{2(g)} + H_2 O_{(I)} & \Delta H = \ -1300. \ kJ \\ C_{(s)} + O_{2(g)} \to \ C O_{2(g)} & \Delta H = \ +394 kJ \\ H_{2(g)} + \ 1/2 O_{2(g)} \to \ H_2 O_{(I)} & \Delta H = \ -286 \ kJ \end{array}$$

$$\begin{array}{c}
 2C + 2O_2 \rightarrow 2CO_2 \\
 H_2 + 1/2O_2 \rightarrow H_2O \\
 \underline{2CO_2 + H_2O \rightarrow C_2H_2 + 5/2O_2} \\
 2C_{(s)} + H_{2(g)} \rightarrow C_2H_{2(g)}
 \end{array}$$

Spontaneity

- Some reactions happen on presumably on their own under certain conditions.
- These reactions are called spontaneous reactions.
- There are multiple factors that go into whether a reactions will be spontaneous or not.
- These are
 - Change in Enthalpy
 - Temperature
 - Change in Entropy

Entropy

- Entropy is referring to disorder of the substance.
- The higher the entropy, the more the disorder.
- For example:
 - a gas has a higher entropy than a liquid.
 - Aqueous solutions have more entropy than solid compounds.
- Nature moves toward raising entropy. This is why:
 - A gas will spread out in a room
 - It takes so much energy for your body to stay together.

Gibb's Free Energy

- Gibb's free energy is a way to measure the spontaneity of a reaction.
- It is denoted by the symbol ΔG .
- If ΔG is negative, then the reaction is spontaneous.
- If ΔG is positive, then the reaction is not spontaneous.
- The equation that relates this is:

$$\Delta G = \Delta H - T \Delta S$$

 ΔS is the change in entropy, T is temperature, and ΔH is the change in enthalpy.

Is it Spontaneous?

- If the enthalpy is negative (meaning the bonds in the products are stronger than the reactants) then it is more likely to be spontaneous.
- If the entropy is positive (meaning the reaction moves toward disorder) then it is likely to be spontaneous.
- If the temperature is high, then the reaction is more likely to be spontaneous as long as the entropy is positive.
- The opposite will decrease the probability of a spontaneous reaction.