Name \qquad

Solution Concentration (Molarity) and Dilution

1) What is the molarity of a solution if 58.2 g of sodium chloride was dissolved in sufficient water to prepare a 1.83 L solution?

0.544 M

2) How many grams of sodium hydroxide must be dissolved to produce $600 . \mathrm{mL}$ of a 0.750 M solution?
18.0g
3) If 9.62 g of potassium iodide is dissolved in sufficient water to make a 4.50 L solution, then what is its molarity?

0.0129M

4) What volume of solution do you have if you know you dissolved 0.0500 g nitric acid to make a solution that was determined to be 0.0793 M ?

10.0 mL

5) If 6.32 g of barium sulfate is produced from the reaction of sulfuric acid with barium chloride, then what was the molarity of the sulfuric acid solution if only 50.0 mL was used?

0.541 M

6) If 98.2 mL of a 1.50 M hydrochloric acid solution is reacted with excess aluminum hydroxide, then how many grams of aluminum chloride would be your theoretical yield?

$$
\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

6.55 g
7) If 25.2 mL of a 2.50 M sodium bromide solution reacts with excess chlorine gas, then how many liters of bromine gas would you expect to collect at 1.03 atm and 295 K ?
0.741 L
8) What was the initial concentration of a silver nitrate solution if 45.8 mL of the solution was reacted with magnesium, and 3.28 g of silver was recovered?

0.664 M

9) How many milliliters of a 1.50 M acetic acid solution will be needed to create 2.50 L of a 0.250 M solution?

417 mL

10) Concentrated hydrochloric acid has a concentration of 12.1 moles per liter. How many milliliters of the concentrated acid should be used to create 3.25 L of a 0.100 M solution?

26.9 mL

11) If you want to produce $1.00 \mathrm{~L} \frac{26.9 \mathrm{~L}}{\text { of } 0.050} 0 \mathrm{M}$ nitric acid from a 10.0 M solution, then calculate the volume of nitric acid and the volume of water necessary to make the solution.

$5.00 \mathrm{~mL}, 995 \mathrm{~mL} \mathrm{H}_{2} \mathbf{O}$

