Calculating the Specific Heat of a Metal

Goal: To use calorimetry to determine the specific heat of a metal

Safety: Goggles and aprons

\mathbf{r}			1		
$\boldsymbol{\nu}$	$r \cap$	ce	α	111	φ.
		-	ш	uı	u.

- 1) Start a water bath by heating 100+ mL of water in a 250mL beaker.
- 2) Weigh the metal.

copper.

- 3) Place the metal in the boiling water bath and allow it to reach the temperature of the water bath.
- 4) Measure the temperature of the water bath with the thermometer while stirring.
- 5) Measure out 20mL of water and pour into the Styrofoam cup.
- 6) Measure the temperature of the water in the cup while stirring.
- 7) With tongs, remove the metal from the boiling water and immediately place in the Styrofoam cup.
- 8) Measure the final temperature in the cup by stirring with the thermometer until the temperature stops changing.
- 9) Pour water down the drain. Place metal on the table to dry.

D	ata
---	-----

2) 3) 4)	mass of metal volume of water initial temperature of water in the cup initial temperature of metal (sitting in water bath) final temperature of water in the cup
Calcul	ation for specific heat of metal
Percen	t Error (based on the C_p of $Cu = 0.38 \text{ J/g}^{\circ}\text{C}$)
Question 1)	ons How did you determine the final temperature of the metal?
2)	Which changed temperature more, the metal or the water? What does that tell you about the specific heat of the metal compared to the water?
3)	List 2 sources of error other then the limitations of your measuring equipment.
4)	On the back of the paper, draw 2 particle diagrams, one for before the hot copper was put in the cool water, and one after they had been together for a while.

5) On the back of the paper, draw the energy bar charts for the change of the water, and the change of the