Current, Voltage, Resistance, Power, and Capacitance

Equations: $\mathrm{I}=\mathrm{q} / \mathrm{t} \quad \mathrm{V}=\mathrm{IR} \quad \mathrm{C}=\mathrm{q} / \mathrm{V} \quad \mathrm{P}=\mathrm{IV} \quad \mathrm{V}=\mathrm{W} / \mathrm{q}_{\mathrm{o}} \quad \mathrm{W}=\mathrm{Pt}$

1) What current is passing through a wire if it takes 5342s to run down a battery that has a charge of 2700C?
2) What is the resistance in a circuit if the voltage is 12 V and the current is 1.3 A ?
3) If a battery loses $3.8 \times 10^{6} \mathrm{~J}$ of energy in $1.3 \times 10^{5} \mathrm{~s}$ with a current of 0.88 A , then what was the voltage of the battery?
4) What is the power of a circuit that has a voltage of 15 V and a current of 0.45 A ?
5) What is the power of a circuit if it has 14.3Ω of resistance in a current of 0.55 A ?
6) What is the capacitance if $5.3 \times 10^{-5} \mathrm{C}$ of charge is stored at a voltage of 6.2 V ?
7) What is the potential difference between two objects if the capacitor has a capacitance of $8.3 \times 10^{-6} \mathrm{~F}$, and a discharge carries 12.2 C of charge?
8) What is the power of a circuit if 12800 J of work is done on 1300 C of charge in 0.33 s ?
9) What current is created by a $3.4 \times 10^{-6} \mathrm{~F}$ capacitor that has a 250 V potential difference that flows in 0.11 s?
10) How much will it cost to run a computer that has a 60 W input and is on for 385 h straight if it costs $\$ 0.13$ per kWh?

Answers

1) 0.505 A
2) 9.2Ω
3) 33.2 V
4) 6.75 W
5) 4.33 W
6) $8.55 \times 10^{-6} \mathrm{~F}$
7) $1.5 \times 10^{6} \mathrm{~V}$
8) 38800 W
9) 0.0077 A
10) $\$ 3.00$
